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Performance	Level:	 Novice	 Beginner	 Apprentice	 J1	

Journeyman	

J2	

Journeyman	

General	
description	of	
bioinformatics	
practitioner	

Reads,	generally	
understands,	but	does	
not	question,	life	science	
research	(results).	
Beginning	to	recognise	
that	‘facts’	are	actually	

just	the	best-currently-
supported	theory.	
Limited	engagement	
with	uncertainty	
associated	with	‘facts’;	
developing	
understanding	of	

experimental	design	
paradigms	in	biology,	&		
own	specific	area	of	
study.		

Consolidates	reading	&	
understanding,	
beginning	to	learn	how	
to	analyze	given	biology	
problems	(with	
software).	Growing	

recognition	that	‘facts’	
are	typically	the	best-
currently-supported	
theory.	Engaging	
consistently	with	
uncertainty	associated	
with	‘facts’;	deepening	

understanding	of	
experimental	design	
paradigms	in	biology,	&	
own	specific	area	of	
study.		

Reads	&	understands;	
reliably	identifies	methods	
(software	&	programming)	
for	given	problems.	
Chooses	&	executes	
correct	analysis,	not	

necessarily	able	to	identify	
several	methods	that	
could	be	equally	viable,	
depending	on	given	
research	objectives.	
Qualified	as	a	fluent,	but	
not	as	an	independent,		

scientist	who	uses	
bioinformatics	as	a	tool,	
but	does	not	yet	
synthesise	techonolgy	with	
biology	to	generate	new	
research	problems.	

Qualified	as	an	
independent	scientist	who	
uses	bioinformatics	
methodologies	as	part	of	
routine	practice.	Poses	
novel	scientific	questions,	

&	identifies	data	&	
technology	to	align	
appropriate	statistical/	
analytical	methods	to	
desired	scientific	
objectives.	Experienced	
reviewer	of	relevant	

technical	features	of	
available	bioinformatics	
methods.	Newly-
independent	expert	in	
integrating	bioinformatics	
technology/	techniques	
into	novel	research	

problems	in	their	area	of	
expertise.	

Independent	scientist	
who	expertly	integrates	
bioinformatics	&	more	
traditional	
methodologies,	as	
needed,	to	achieve	

desired	objectives	&	
contribute	to	the	body	
of	knowledge.	Expert	
reviewer	of	relevant	
technical	features	of	
available	bioinformatics	

options.	

Considerations	for	

evidence	of	
performance	at	
this	level	

Bloom’s	1,	early	2:	
remember,	understand.	
Problems	the	Novice	can	
engage	with	are	well-
defined,	with	solutions	
already	known.	Work	
does	not	generally	

reflect	self-assessment.	

Bloom’s	2-3:	understand	
&	apply,	but	only	what	
they	are	told	to	apply.	
Problems	the	Beginner	
can	engage	with	are	
well-defined.	Work	
reflects	some	self-

assessment,	when	
directed	to	do	so.	

Bloom’s	3-4,	early	5:	
choose	&	apply	techniques	
to	problems	that	have	
been	defined	(either	
jointly	or	by	others).	Can	
analyze	&	interpret	
appropriate	data,	identify	

basic	limitations	&	
conceptualise	a	need	for	
next	
steps/contextualization	of	
results	with	extant	
literature.	Seeks	guidance	
to	improve	self-

assessment	of	own	work.	

Bloom’s	5,	early	6:	
evaluate	(review)	&	
synthesise	novel	life-	
science	knowledge	while	
developing	abilities	to	
integrate	bioinformatics	
into	research	practice.	

Shows	independent	
expertise	in	a	specific	life-
science	area,	&	confidently	
integrates	current	
bioinformatics	technology	
into	that	area.	Beginning	
to	critically	evaluate	

experimental	paradigms	&	
their	results,	without	
knowing/	requiring	that	
there	be	‘one	right	
answer’.	Consistently	self-
assesses	own	work.	

Bloom’s	6:	prepared	for	
independent	scientific	
work.	Expert	in	design	&	
critical	evaluation	of	
experimental	paradigms	
&	their	results.	Self-
assesses	in	own	work,	&	

encourages	others	to	
develop	this	skill.	

Ethical	practice	
Exhibits	respect	for	
community	

standards/rules	for	
public	behavior	&	
personal	interaction.	
Learning	how	to	
recognise,	&	manifest	
respect	for,	intellectual	
property,	professional	

accountability,	&	
scientific	contributions.	

Learning	to	recognise	
‘misconduct’	in	the	

scientific	sense.	Learning	
to	avoid,	&	respond	to,	
misconduct;	&	the	
importance	of	neither	
condoning	nor	
promoting	it.	

Learning	the	principles	of	
ethical	professional	&	

scientific	conduct.	Seeks	
guidance	to	strengthen	
applications	of	these	
principles	in	own	practice.	
Learning	how	to	respond	
to	unethical	practice.	

Practices	bioinformatics	in	
an	ethical	way,	&	does	not	

promote	or	tolerate	any	
type	of	professional	or	
scientific	misconduct.	
Seeks	guidance	in	
how/when	to	take	
appropriate	action	when	
aware	of	unethical	

practices	by	others.	

Practices,	&	encourages	
all	others	to	practice,	

bioinformatics	in	an	
ethical	way.	Does	not	
promote	or	tolerate	any	
type	of	professional	or	
scientific	misconduct.	
Takes	appropriate	
action	when	aware	of	

unethical	practices	by	
others.	

Prerequisite	

knowledge	–	
biology	(includes	
statistical	
inference	&	
experimental	
design	

considerations)	

Basic	knowledge	of	
biology;	little-to-no	
awareness	of	the	
uncertainty	inherent	in	
experimental	designs	
common	in	the	life	

sciences.	Thinking	about	
the	life	sciences	is	based	
on	uncritical	acceptance	
of	information	as	
‘factual’	or	‘true’.	

Advanced	knowledge	of	
biology,	&	basic	
knowledge	of	key	
bioinformatics	methods.	
Very	simple	
statistics/programs	are	

run	to	answer	pre-
defined	scientific	
questions.	Learning	to	
understand	the	
uncertainty	inherent	in	
the	scientific	method,	
questions	assumptions	
in	the	data	&	their	

relevance	for	given	

Thinking	about	life	
sciences	integrates	both	
experimental	&	
bioinformatics/technologic
al	sources	for	data	&	
knowledge.	Understands		

the	uncertainty	inherent	in	
the	scientific	method,	
questions	assumptions	in	
the	data	&	their	relevance	
for	given	scientific	
problems	(which	typically	
arise	from	others,	or	with	
others).	Experimental	

design	&	statistical	

Recognises	the	importance	
of,	&	is	able	to	critically	
evaluate,	the	relevant	
literature,	&	understands	
historical	background	of	
the	relevant	biological	

system(s).	Sufficient	
knowledge	of	a	biological	
system(s)	to	be	able	to	
draw	functional	
conclusions	from	analytical	
results.	Collaborates	with	
experts	to	inform	the	next	
stages	in	the	experimental	

design	process	(validating	

Makes	predictions	to	
inform	next	stages	of	
experimental	design	
process.	Evaluates	
relevant	experimental	
methods	that	can	be	

applied	in	any	problem.	
Can	generalise	to	other	
biological	systems;	
independently	solves	
biological	problems	that	
are	innovative	&	move	
the	field	forward.	
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Performance	Level:	 Novice	 Beginner	 Apprentice	 J1	

Journeyman	

J2	

Journeyman	

General	
description	of	
bioinformatics	
practitioner	

Reads,	generally	
understands,	but	does	
not	question,	life	science	
research	(results).	
Beginning	to	recognise	
that	‘facts’	are	actually	

just	the	best-currently-
supported	theory.	
Limited	engagement	
with	uncertainty	
associated	with	‘facts’;	
developing	
understanding	of	

experimental	design	
paradigms	in	biology,	&		
own	specific	area	of	
study.		

Consolidates	reading	&	
understanding,	
beginning	to	learn	how	
to	analyze	given	biology	
problems	(with	
software).	Growing	

recognition	that	‘facts’	
are	typically	the	best-
currently-supported	
theory.	Engaging	
consistently	with	
uncertainty	associated	
with	‘facts’;	deepening	

understanding	of	
experimental	design	
paradigms	in	biology,	&	
own	specific	area	of	
study.		

Reads	&	understands;	
reliably	identifies	methods	
(software	&	programming)	
for	given	problems.	
Chooses	&	executes	
correct	analysis,	not	

necessarily	able	to	identify	
several	methods	that	
could	be	equally	viable,	
depending	on	given	
research	objectives.	
Qualified	as	a	fluent,	but	
not	as	an	independent,		

scientist	who	uses	
bioinformatics	as	a	tool,	
but	does	not	yet	
synthesise	techonolgy	with	
biology	to	generate	new	
research	problems.	

Qualified	as	an	
independent	scientist	who	
uses	bioinformatics	
methodologies	as	part	of	
routine	practice.	Poses	
novel	scientific	questions,	

&	identifies	data	&	
technology	to	align	
appropriate	statistical/	
analytical	methods	to	
desired	scientific	
objectives.	Experienced	
reviewer	of	relevant	

technical	features	of	
available	bioinformatics	
methods.	Newly-
independent	expert	in	
integrating	bioinformatics	
technology/	techniques	
into	novel	research	

problems	in	their	area	of	
expertise.	

Independent	scientist	
who	expertly	integrates	
bioinformatics	&	more	
traditional	
methodologies,	as	
needed,	to	achieve	

desired	objectives	&	
contribute	to	the	body	
of	knowledge.	Expert	
reviewer	of	relevant	
technical	features	of	
available	bioinformatics	

options.	

Considerations	for	

evidence	of	
performance	at	
this	level	

Bloom’s	1,	early	2:	
remember,	understand.	
Problems	the	Novice	can	
engage	with	are	well-
defined,	with	solutions	
already	known.	Work	
does	not	generally	

reflect	self-assessment.	

Bloom’s	2-3:	understand	
&	apply,	but	only	what	
they	are	told	to	apply.	
Problems	the	Beginner	
can	engage	with	are	
well-defined.	Work	
reflects	some	self-

assessment,	when	
directed	to	do	so.	

Bloom’s	3-4,	early	5:	
choose	&	apply	techniques	
to	problems	that	have	
been	defined	(either	
jointly	or	by	others).	Can	
analyze	&	interpret	
appropriate	data,	identify	

basic	limitations	&	
conceptualise	a	need	for	
next	
steps/contextualization	of	
results	with	extant	
literature.	Seeks	guidance	
to	improve	self-

assessment	of	own	work.	

Bloom’s	5,	early	6:	
evaluate	(review)	&	
synthesise	novel	life-	
science	knowledge	while	
developing	abilities	to	
integrate	bioinformatics	
into	research	practice.	

Shows	independent	
expertise	in	a	specific	life-
science	area,	&	confidently	
integrates	current	
bioinformatics	technology	
into	that	area.	Beginning	
to	critically	evaluate	

experimental	paradigms	&	
their	results,	without	
knowing/	requiring	that	
there	be	‘one	right	
answer’.	Consistently	self-
assesses	own	work.	

Bloom’s	6:	prepared	for	
independent	scientific	
work.	Expert	in	design	&	
critical	evaluation	of	
experimental	paradigms	
&	their	results.	Self-
assesses	in	own	work,	&	

encourages	others	to	
develop	this	skill.	

Ethical	practice	
Exhibits	respect	for	
community	

standards/rules	for	
public	behavior	&	
personal	interaction.	
Learning	how	to	
recognise,	&	manifest	
respect	for,	intellectual	
property,	professional	

accountability,	&	
scientific	contributions.	

Learning	to	recognise	
‘misconduct’	in	the	

scientific	sense.	Learning	
to	avoid,	&	respond	to,	
misconduct;	&	the	
importance	of	neither	
condoning	nor	
promoting	it.	

Learning	the	principles	of	
ethical	professional	&	

scientific	conduct.	Seeks	
guidance	to	strengthen	
applications	of	these	
principles	in	own	practice.	
Learning	how	to	respond	
to	unethical	practice.	

Practices	bioinformatics	in	
an	ethical	way,	&	does	not	

promote	or	tolerate	any	
type	of	professional	or	
scientific	misconduct.	
Seeks	guidance	in	
how/when	to	take	
appropriate	action	when	
aware	of	unethical	

practices	by	others.	

Practices,	&	encourages	
all	others	to	practice,	

bioinformatics	in	an	
ethical	way.	Does	not	
promote	or	tolerate	any	
type	of	professional	or	
scientific	misconduct.	
Takes	appropriate	
action	when	aware	of	

unethical	practices	by	
others.	

Prerequisite	

knowledge	–	
biology	(includes	
statistical	
inference	&	
experimental	
design	

considerations)	

Basic	knowledge	of	
biology;	little-to-no	
awareness	of	the	
uncertainty	inherent	in	
experimental	designs	
common	in	the	life	

sciences.	Thinking	about	
the	life	sciences	is	based	
on	uncritical	acceptance	
of	information	as	
‘factual’	or	‘true’.	

Advanced	knowledge	of	
biology,	&	basic	
knowledge	of	key	
bioinformatics	methods.	
Very	simple	
statistics/programs	are	

run	to	answer	pre-
defined	scientific	
questions.	Learning	to	
understand	the	
uncertainty	inherent	in	
the	scientific	method,	
questions	assumptions	
in	the	data	&	their	

relevance	for	given	

Thinking	about	life	
sciences	integrates	both	
experimental	&	
bioinformatics/technologic
al	sources	for	data	&	
knowledge.	Understands		

the	uncertainty	inherent	in	
the	scientific	method,	
questions	assumptions	in	
the	data	&	their	relevance	
for	given	scientific	
problems	(which	typically	
arise	from	others,	or	with	
others).	Experimental	

design	&	statistical	

Recognises	the	importance	
of,	&	is	able	to	critically	
evaluate,	the	relevant	
literature,	&	understands	
historical	background	of	
the	relevant	biological	

system(s).	Sufficient	
knowledge	of	a	biological	
system(s)	to	be	able	to	
draw	functional	
conclusions	from	analytical	
results.	Collaborates	with	
experts	to	inform	the	next	
stages	in	the	experimental	

design	process	(validating	

Makes	predictions	to	
inform	next	stages	of	
experimental	design	
process.	Evaluates	
relevant	experimental	
methods	that	can	be	

applied	in	any	problem.	
Can	generalise	to	other	
biological	systems;	
independently	solves	
biological	problems	that	
are	innovative	&	move	
the	field	forward.	
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Performance	Level:	 Novice	 Beginner	 Apprentice	
J1	

Journeyman	
J2	

Journeyman	

General	
description	of	
bioinformatics	
practitioner	

Reads,	generally	
understands,	but	does	
not	question,	life	science	

research	(results).	
Beginning	to	recognise	
that	‘facts’	are	actually	
just	the	best-currently-
supported	theory.	
Limited	engagement	
with	uncertainty	

associated	with	‘facts’;	
developing	under-
standing	of	experimental	
design	paradigms	in	
biology,	&		own	specific	
area	of	study.		

Consolidates	reading	&	
understanding,	
beginning	to	learn	how	

to	analyse	given	biology	
problems	(with	
software).	Growing	
recognition	that	‘facts’	
are	typically	the	best-
currently-supported	
theory.	Engaging	

consistently	with	
uncertainty	associated	
with	‘facts’;	deepening	
understanding	of	
experimental	design	
paradigms	in	biology,	&	
own	specific	area	of	
study.		

Reads	&	understands;	
reliably	identifies	methods	
(software	&	programming)	

for	given	problems.	
Chooses	&	executes	
correct	analysis,	not	
necessarily	able	to	identify	
several	methods	that	
could	be	equally	viable,	
depending	on	given	

research	objectives.	
Qualified	as	a	fluent,	but	
not	as	an	independent,		
scientist	who	uses	
bioinformatics	as	a	tool,	
but	does	not	yet	
synthesise	techonolgy	with	
biology	to	generate	new	

research	problems.	

Qualified	as	an	
independent	scientist	who	
uses	bioinformatics	

methodologies	as	part	of	
routine	practice.	Poses	
novel	scientific	questions,	
&	identifies	data	&	
technology	to	align	
appropriate	statistical/	
analytical	methods	to	

desired	scientific	
objectives.	Experienced	
reviewer	of	relevant	
technical	features	of	
available	bioinformatics	
methods.	Newly-indepen-
dent	expert	in	integrating	
bioinformatics	technology/	

techniques	into	novel	
research	problems	in	their	
area	of	expertise.	

Independent	scientist	who	
expertly	integrates	
bioinformatics	&	more	

traditional	method-ologies,	
as	needed,	to	achieve	
desired	objectives	&	
contribute	to	the	body	of	
know-ledge.	Expert	reviewer	
of	relevant	technical	features	
of	available	bioinformatics	

options.	

Considerations	for	
evidence	of	
performance	at	
this	level	

Bloom’s	1,	early	2:	
remember,	understand.	
Problems	the	Novice	can	
engage	with	are	well-
defined,	with	solutions	

already	known.	Work	
does	not	generally	
reflect	self-assessment.	

Bloom’s	2-3:	understand	
&	apply,	but	only	what	
they	are	told	to	apply.	
Problems	the	Beginner	
can	engage	with	are	

well-defined.	Work	
reflects	some	self-
assessment,	when	
directed	to	do	so.	

Bloom’s	3-4,	early	5:	
choose	&	apply	techniques	
to	problems	that	have	
been	defined	(either	
jointly	or	by	others).	Can	

analyse	&	interpret	
appropriate	data,	identify	
basic	limitations	&	
conceptualise	a	need	for	
next	steps/contextual-
isation	of	results	with	
extant	literature.	Seeks	

guidance	to	improve	self-
assessment	of	own	work.	

Bloom’s	5,	early	6:	
evaluate	(review)	&	
synthesise	novel	life-	
science	knowledge	while	
developing	abilities	to	

integrate	bioinformatics	
into	research	practice.	
Shows	independent	
expertise	in	a	specific	life-
science	area,	&	confidently	
integrates	current	
bioinformatics	technology	

into	that	area.	Beginning	
to	critically	evaluate	
experimental	paradigms	&	
their	results,	without	
knowing/requiring	that	
there	be	‘one	right	
answer’.	Consistently	self-

assesses	own	work.	

Bloom’s	6:	prepared	for	
independent	scientific	work.	
Expert	in	design	&	critical	
evaluation	of	experimental	
paradigms	&	their	results.	

Self-assesses	in	own	work,	&	
encourages	others	to	
develop	this	skill.	

Ethical	practice	
Exhibits	respect	for	
community	
standards/rules	for	
public	behavior	&	
personal	interaction.	
Learning	how	to	
recognise,	&	manifest	
respect	for,	intellectual	

property,	professional	
accountability,	&	
scientific	contributions.	

Learning	to	recognise	
‘misconduct’	in	the	
scientific	sense.	Learning	
to	avoid,	&	respond	to,	
misconduct;	&	the	
importance	of	neither	
condoning	nor	
promoting	it.	

Learning	the	principles	of	
ethical	professional	&	
scientific	conduct.	Seeks	
guidance	to	strengthen	
applications	of	these	
principles	in	own	practice.	
Learning	how	to	respond	
to	unethical	practice.	

Practices	bioinformatics	in	
an	ethical	way,	&	does	not	
promote	or	tolerate	any	
type	of	professional	or	
scientific	misconduct.	
Seeks	guidance	in	
how/when	to	take	
appropriate	action	when	

aware	of	unethical	
practices	by	others.	

Practices,	&	encourages	all	
others	to	practice,	
bioinformatics	in	an	ethical	
way.	Does	not	promote	or	
tolerate	any	type	of	
professional	or	scientific	
misconduct.	Takes	
appropriate	action	when	

aware	of	unethical	practices	
by	others.	

Prerequisite	
knowledge	–	
biology	(includes	
statistical	
inference	&	
experimental	

design	
considerations)	

Basic	knowledge	of	
biology;	little-to-no	
awareness	of	the	
uncertainty	inherent	in	
experimental	designs	

common	in	the	life	
sciences.	Thinking	about	
the	life	sciences	is	based	
on	uncritical	acceptance	
of	information	as	
‘factual’	or	‘true’.	

Advanced	knowledge	of	
biology,	&	basic	
knowledge	of	key	
bioinformatics	methods.	
Very	simple	statistics/	

programs	are	run	to	
answer	pre-defined	
scientific	questions.	
Learning	to	understand	
the	uncertainty	inherent	
in	the	scientific	method,	
questions	assumptions	

in	the	data	&	their	
relevance	for	given	
scientific	problems	
(which	arise	from	
others).	

Thinking	about	life	
sciences	integrates	both	
experimental	&	
bioinformatics/technologic
al	sources	for	data	&	

knowledge.	Understands		
the	uncertainty	inherent	in	
the	scientific	method,	
questions	assumptions	in	
the	data	&	their	relevance	
for	given	scientific	
problems	(which	typically	

arise	from	others,	or	with	
others).	Experimental	
design	&	statistical	
inference	are	recognised	&	
exploited	with	guidance,	
to	answer	given	scientific	
problems.	Can	recognise	

inconsistencies	in	
biological	data/experi-
ments	that	are	identified	

Recognises	the	importance	
of,	&	is	able	to	critically	
evaluate,	the	relevant	
literature,	&	understands	
historical	background	of	

the	relevant	biological	
system(s).	Sufficient	
knowledge	of	a	biological	
system(s)	to	be	able	to	
draw	functional	
conclusions	from	analytical	
results.	Collaborates	with	

experts	to	inform	the	next	
stages	in	the	experimental	
design	process	(validating	
results,	follow-up	analyses,	
etc.).	

Makes	predictions	to	inform	
next	stages	of	experimental	
design	process.	Evaluates	
relevant	experimental	
methods	that	can	be	applied	

in	any	problem.	Can	
generalise	to	other	biological	
systems;	independently	
solves	biological	problems	
that	are	innovative	&	move	
the	field	forward.	
	

A descriptive ‘3D’ table
KSAs, Stages, PLDs 



Performance	Level:	 Novice	 Beginner	 Apprentice	 J1	

Journeyman	

J2	

Journeyman	

General	
description	of	
bioinformatics	
practitioner	

Reads,	generally	
understands,	but	does	
not	question,	life	science	
research	(results).	
Beginning	to	recognise	
that	‘facts’	are	actually	

just	the	best-currently-
supported	theory.	
Limited	engagement	
with	uncertainty	
associated	with	‘facts’;	
developing	
understanding	of	

experimental	design	
paradigms	in	biology,	&		
own	specific	area	of	
study.		

Consolidates	reading	&	
understanding,	
beginning	to	learn	how	
to	analyze	given	biology	
problems	(with	
software).	Growing	

recognition	that	‘facts’	
are	typically	the	best-
currently-supported	
theory.	Engaging	
consistently	with	
uncertainty	associated	
with	‘facts’;	deepening	

understanding	of	
experimental	design	
paradigms	in	biology,	&	
own	specific	area	of	
study.		

Reads	&	understands;	
reliably	identifies	methods	
(software	&	programming)	
for	given	problems.	
Chooses	&	executes	
correct	analysis,	not	

necessarily	able	to	identify	
several	methods	that	
could	be	equally	viable,	
depending	on	given	
research	objectives.	
Qualified	as	a	fluent,	but	
not	as	an	independent,		

scientist	who	uses	
bioinformatics	as	a	tool,	
but	does	not	yet	
synthesise	techonolgy	with	
biology	to	generate	new	
research	problems.	

Qualified	as	an	
independent	scientist	who	
uses	bioinformatics	
methodologies	as	part	of	
routine	practice.	Poses	
novel	scientific	questions,	

&	identifies	data	&	
technology	to	align	
appropriate	statistical/	
analytical	methods	to	
desired	scientific	
objectives.	Experienced	
reviewer	of	relevant	

technical	features	of	
available	bioinformatics	
methods.	Newly-
independent	expert	in	
integrating	bioinformatics	
technology/	techniques	
into	novel	research	

problems	in	their	area	of	
expertise.	

Independent	scientist	
who	expertly	integrates	
bioinformatics	&	more	
traditional	
methodologies,	as	
needed,	to	achieve	

desired	objectives	&	
contribute	to	the	body	
of	knowledge.	Expert	
reviewer	of	relevant	
technical	features	of	
available	bioinformatics	

options.	

Considerations	for	

evidence	of	
performance	at	
this	level	

Bloom’s	1,	early	2:	
remember,	understand.	
Problems	the	Novice	can	
engage	with	are	well-
defined,	with	solutions	
already	known.	Work	
does	not	generally	

reflect	self-assessment.	

Bloom’s	2-3:	understand	
&	apply,	but	only	what	
they	are	told	to	apply.	
Problems	the	Beginner	
can	engage	with	are	
well-defined.	Work	
reflects	some	self-

assessment,	when	
directed	to	do	so.	

Bloom’s	3-4,	early	5:	
choose	&	apply	techniques	
to	problems	that	have	
been	defined	(either	
jointly	or	by	others).	Can	
analyze	&	interpret	
appropriate	data,	identify	

basic	limitations	&	
conceptualise	a	need	for	
next	
steps/contextualization	of	
results	with	extant	
literature.	Seeks	guidance	
to	improve	self-

assessment	of	own	work.	

Bloom’s	5,	early	6:	
evaluate	(review)	&	
synthesise	novel	life-	
science	knowledge	while	
developing	abilities	to	
integrate	bioinformatics	
into	research	practice.	

Shows	independent	
expertise	in	a	specific	life-
science	area,	&	confidently	
integrates	current	
bioinformatics	technology	
into	that	area.	Beginning	
to	critically	evaluate	

experimental	paradigms	&	
their	results,	without	
knowing/	requiring	that	
there	be	‘one	right	
answer’.	Consistently	self-
assesses	own	work.	

Bloom’s	6:	prepared	for	
independent	scientific	
work.	Expert	in	design	&	
critical	evaluation	of	
experimental	paradigms	
&	their	results.	Self-
assesses	in	own	work,	&	

encourages	others	to	
develop	this	skill.	

Ethical	practice	
Exhibits	respect	for	
community	

standards/rules	for	
public	behavior	&	
personal	interaction.	
Learning	how	to	
recognise,	&	manifest	
respect	for,	intellectual	
property,	professional	

accountability,	&	
scientific	contributions.	

Learning	to	recognise	
‘misconduct’	in	the	

scientific	sense.	Learning	
to	avoid,	&	respond	to,	
misconduct;	&	the	
importance	of	neither	
condoning	nor	
promoting	it.	

Learning	the	principles	of	
ethical	professional	&	

scientific	conduct.	Seeks	
guidance	to	strengthen	
applications	of	these	
principles	in	own	practice.	
Learning	how	to	respond	
to	unethical	practice.	

Practices	bioinformatics	in	
an	ethical	way,	&	does	not	

promote	or	tolerate	any	
type	of	professional	or	
scientific	misconduct.	
Seeks	guidance	in	
how/when	to	take	
appropriate	action	when	
aware	of	unethical	

practices	by	others.	

Practices,	&	encourages	
all	others	to	practice,	

bioinformatics	in	an	
ethical	way.	Does	not	
promote	or	tolerate	any	
type	of	professional	or	
scientific	misconduct.	
Takes	appropriate	
action	when	aware	of	

unethical	practices	by	
others.	

Prerequisite	

knowledge	–	
biology	(includes	
statistical	
inference	&	
experimental	
design	

considerations)	

Basic	knowledge	of	
biology;	little-to-no	
awareness	of	the	
uncertainty	inherent	in	
experimental	designs	
common	in	the	life	

sciences.	Thinking	about	
the	life	sciences	is	based	
on	uncritical	acceptance	
of	information	as	
‘factual’	or	‘true’.	

Advanced	knowledge	of	
biology,	&	basic	
knowledge	of	key	
bioinformatics	methods.	
Very	simple	
statistics/programs	are	

run	to	answer	pre-
defined	scientific	
questions.	Learning	to	
understand	the	
uncertainty	inherent	in	
the	scientific	method,	
questions	assumptions	
in	the	data	&	their	

relevance	for	given	

Thinking	about	life	
sciences	integrates	both	
experimental	&	
bioinformatics/technologic
al	sources	for	data	&	
knowledge.	Understands		

the	uncertainty	inherent	in	
the	scientific	method,	
questions	assumptions	in	
the	data	&	their	relevance	
for	given	scientific	
problems	(which	typically	
arise	from	others,	or	with	
others).	Experimental	

design	&	statistical	

Recognises	the	importance	
of,	&	is	able	to	critically	
evaluate,	the	relevant	
literature,	&	understands	
historical	background	of	
the	relevant	biological	

system(s).	Sufficient	
knowledge	of	a	biological	
system(s)	to	be	able	to	
draw	functional	
conclusions	from	analytical	
results.	Collaborates	with	
experts	to	inform	the	next	
stages	in	the	experimental	

design	process	(validating	

Makes	predictions	to	
inform	next	stages	of	
experimental	design	
process.	Evaluates	
relevant	experimental	
methods	that	can	be	

applied	in	any	problem.	
Can	generalise	to	other	
biological	systems;	
independently	solves	
biological	problems	that	
are	innovative	&	move	
the	field	forward.	
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Performance	Level:	 Novice	 Beginner	 Apprentice	
J1	

Journeyman	
J2	

Journeyman	

General	
description	of	
bioinformatics	
practitioner	

Reads,	generally	
understands,	but	does	
not	question,	life	science	

research	(results).	
Beginning	to	recognise	
that	‘facts’	are	actually	
just	the	best-currently-
supported	theory.	
Limited	engagement	
with	uncertainty	

associated	with	‘facts’;	
developing	under-
standing	of	experimental	
design	paradigms	in	
biology,	&		own	specific	
area	of	study.		

Consolidates	reading	&	
understanding,	
beginning	to	learn	how	

to	analyse	given	biology	
problems	(with	
software).	Growing	
recognition	that	‘facts’	
are	typically	the	best-
currently-supported	
theory.	Engaging	

consistently	with	
uncertainty	associated	
with	‘facts’;	deepening	
understanding	of	
experimental	design	
paradigms	in	biology,	&	
own	specific	area	of	
study.		

Reads	&	understands;	
reliably	identifies	methods	
(software	&	programming)	

for	given	problems.	
Chooses	&	executes	
correct	analysis,	not	
necessarily	able	to	identify	
several	methods	that	
could	be	equally	viable,	
depending	on	given	

research	objectives.	
Qualified	as	a	fluent,	but	
not	as	an	independent,		
scientist	who	uses	
bioinformatics	as	a	tool,	
but	does	not	yet	
synthesise	techonolgy	with	
biology	to	generate	new	

research	problems.	

Qualified	as	an	
independent	scientist	who	
uses	bioinformatics	

methodologies	as	part	of	
routine	practice.	Poses	
novel	scientific	questions,	
&	identifies	data	&	
technology	to	align	
appropriate	statistical/	
analytical	methods	to	

desired	scientific	
objectives.	Experienced	
reviewer	of	relevant	
technical	features	of	
available	bioinformatics	
methods.	Newly-indepen-
dent	expert	in	integrating	
bioinformatics	technology/	

techniques	into	novel	
research	problems	in	their	
area	of	expertise.	

Independent	scientist	who	
expertly	integrates	
bioinformatics	&	more	

traditional	method-ologies,	
as	needed,	to	achieve	
desired	objectives	&	
contribute	to	the	body	of	
know-ledge.	Expert	reviewer	
of	relevant	technical	features	
of	available	bioinformatics	

options.	

Considerations	for	
evidence	of	
performance	at	
this	level	

Bloom’s	1,	early	2:	
remember,	understand.	
Problems	the	Novice	can	
engage	with	are	well-
defined,	with	solutions	

already	known.	Work	
does	not	generally	
reflect	self-assessment.	

Bloom’s	2-3:	understand	
&	apply,	but	only	what	
they	are	told	to	apply.	
Problems	the	Beginner	
can	engage	with	are	

well-defined.	Work	
reflects	some	self-
assessment,	when	
directed	to	do	so.	

Bloom’s	3-4,	early	5:	
choose	&	apply	techniques	
to	problems	that	have	
been	defined	(either	
jointly	or	by	others).	Can	

analyse	&	interpret	
appropriate	data,	identify	
basic	limitations	&	
conceptualise	a	need	for	
next	steps/contextual-
isation	of	results	with	
extant	literature.	Seeks	

guidance	to	improve	self-
assessment	of	own	work.	

Bloom’s	5,	early	6:	
evaluate	(review)	&	
synthesise	novel	life-	
science	knowledge	while	
developing	abilities	to	

integrate	bioinformatics	
into	research	practice.	
Shows	independent	
expertise	in	a	specific	life-
science	area,	&	confidently	
integrates	current	
bioinformatics	technology	

into	that	area.	Beginning	
to	critically	evaluate	
experimental	paradigms	&	
their	results,	without	
knowing/requiring	that	
there	be	‘one	right	
answer’.	Consistently	self-

assesses	own	work.	

Bloom’s	6:	prepared	for	
independent	scientific	work.	
Expert	in	design	&	critical	
evaluation	of	experimental	
paradigms	&	their	results.	

Self-assesses	in	own	work,	&	
encourages	others	to	
develop	this	skill.	

Ethical	practice	
Exhibits	respect	for	
community	
standards/rules	for	
public	behavior	&	
personal	interaction.	
Learning	how	to	
recognise,	&	manifest	
respect	for,	intellectual	

property,	professional	
accountability,	&	
scientific	contributions.	

Learning	to	recognise	
‘misconduct’	in	the	
scientific	sense.	Learning	
to	avoid,	&	respond	to,	
misconduct;	&	the	
importance	of	neither	
condoning	nor	
promoting	it.	

Learning	the	principles	of	
ethical	professional	&	
scientific	conduct.	Seeks	
guidance	to	strengthen	
applications	of	these	
principles	in	own	practice.	
Learning	how	to	respond	
to	unethical	practice.	

Practices	bioinformatics	in	
an	ethical	way,	&	does	not	
promote	or	tolerate	any	
type	of	professional	or	
scientific	misconduct.	
Seeks	guidance	in	
how/when	to	take	
appropriate	action	when	

aware	of	unethical	
practices	by	others.	

Practices,	&	encourages	all	
others	to	practice,	
bioinformatics	in	an	ethical	
way.	Does	not	promote	or	
tolerate	any	type	of	
professional	or	scientific	
misconduct.	Takes	
appropriate	action	when	

aware	of	unethical	practices	
by	others.	

Prerequisite	
knowledge	–	
biology	(includes	
statistical	
inference	&	
experimental	

design	
considerations)	

Basic	knowledge	of	
biology;	little-to-no	
awareness	of	the	
uncertainty	inherent	in	
experimental	designs	

common	in	the	life	
sciences.	Thinking	about	
the	life	sciences	is	based	
on	uncritical	acceptance	
of	information	as	
‘factual’	or	‘true’.	

Advanced	knowledge	of	
biology,	&	basic	
knowledge	of	key	
bioinformatics	methods.	
Very	simple	statistics/	

programs	are	run	to	
answer	pre-defined	
scientific	questions.	
Learning	to	understand	
the	uncertainty	inherent	
in	the	scientific	method,	
questions	assumptions	

in	the	data	&	their	
relevance	for	given	
scientific	problems	
(which	arise	from	
others).	

Thinking	about	life	
sciences	integrates	both	
experimental	&	
bioinformatics/technologic
al	sources	for	data	&	

knowledge.	Understands		
the	uncertainty	inherent	in	
the	scientific	method,	
questions	assumptions	in	
the	data	&	their	relevance	
for	given	scientific	
problems	(which	typically	

arise	from	others,	or	with	
others).	Experimental	
design	&	statistical	
inference	are	recognised	&	
exploited	with	guidance,	
to	answer	given	scientific	
problems.	Can	recognise	

inconsistencies	in	
biological	data/experi-
ments	that	are	identified	

Recognises	the	importance	
of,	&	is	able	to	critically	
evaluate,	the	relevant	
literature,	&	understands	
historical	background	of	

the	relevant	biological	
system(s).	Sufficient	
knowledge	of	a	biological	
system(s)	to	be	able	to	
draw	functional	
conclusions	from	analytical	
results.	Collaborates	with	

experts	to	inform	the	next	
stages	in	the	experimental	
design	process	(validating	
results,	follow-up	analyses,	
etc.).	

Makes	predictions	to	inform	
next	stages	of	experimental	
design	process.	Evaluates	
relevant	experimental	
methods	that	can	be	applied	

in	any	problem.	Can	
generalise	to	other	biological	
systems;	independently	
solves	biological	problems	
that	are	innovative	&	move	
the	field	forward.	
	

by	others,	but	cannot	
troubleshoot	experimental	
methods	independently.	

Prerequisite	
knowledge	–	
computational	

methods	(includes	
statistical	
inference	&	
experimental	
design	
considerations)	

Basic	knowledge	of	
computational	methods;	

little-to-no	awareness	of	
the	relevance	of	
computational	methods	
for	life	sciences.	No	
awareness	of	
experimental	designs	or	
how	these	can	be	used	

or	implemented	in	
computational	
applications	Thinking	
about	tools,		computers,	
software,	&	
programming	is	strictly	
uni-dimensional:	i.e.,	

extrapolation	&/or	
abstraction	of	
knowledge	about	
computational	methods	
to	other	systems,	
programs,	or	problems,	
are	not	possible.	Can	run	
software	or	execute	

code	they	are	given	(as	
appropriate)	with	
precise	instructions;	
cannot	write	a	script	or	
debug/troubleshoot.	

Computers,	software,	
tools,	&	programming	

are	understood	to	be	
options	for	scientific	
work.	Learning	how	to	
write	&	test	code,	run	
software,	or	use	tools,	
as	appropriate.	Is	
developing	awareness	of	

the	variety	of	
bioinformatics	tools,	
designs,	&	resources,	
but	is	not	able	to	choose	
or	apply	the	most	
appropriate	of	these	for	
any	given	question;	

when	choices	are	made,	
tools	are	used	
uncritically.	Developing	
awareness	that	
computational	tools	
require	input	
parameters,	but	uses	
the	default	settings.	

Learning	to	read,	
understand,	
troubleshoot,	&	make	
minor	modifications	to	
existing	code/scripts.	
Does	not	synthesise	
results	or	outputs.	

Learning	to	test	software	
&	programming	

approaches	to	different	
types	of	problem.	
Experimental	design	&	
statistical	inference	using	
computing	&	algorithms	
are	recognised	&	applied,	
with	guidance,	to	answer	

given	scientific	problems.	
Learning	‘best	practices’	
for	programming,	if	
programming	is	part	of	the	
task.	Can	write	basic	code	
in	a	given	language	or	run	
appropriate	software,	

using	judgement,	but	not	
inventing	or	innovating.	
Cannot	troubleshoot	
complex	computational	
methods	–	will	ask	for	
guidance.	Exploring	
alternatives	to	default	
input	parameters	across	

computational	tools.	Can	
apply	knowledge	of	tools	
to	interpret	their	results	&	
output.	Seeks	guidance	in	
synthesis	of	results	or	
outputs.		

Recognises	the	importance	
of,	is	able	to	critically	

evaluate,	&	understands	
historical	background	of	
the	relevant	data,	
databases,	algorithms,	
tools,	data	analysis/	
statistical	methods	&	
computational	resources.	

Can	utilise	these	&	justify	
trade-offs	across	
methodologies	(e.g.,	which	
statistical	test	to	apply	&	
what	computational	
methods	to	use).	
Collaboratively	synthesises	

&	critically	questions	
analysis	results	&	output	
from	tools.	Recognises	the	
iterative	nature	of	
experiments	(e.g.,	bench,	
data	analysis,	back	to	
bench).	Can	write	code/	
use	tools	to	accomplish	

these,	but	collaborates	
with	domain	experts	for	
identifying	&	articulating		
biological	problems	that	
are	innovative	&	move	the	
field	forward.		

Develops	robust,	well-
documented,	optimised,	

reproducible	code	&/or	uses	
tools	to	address	biological	
problems;	moves	away	from	
standard	procedures	&	
innovates	to	accommodate	
new	data	types,	tools,	&	
techniques	as	needed.	Can	

generalise	to	new	coding	
languages	or	software/tools/	
resources.		

Integrate	
interdisciplinarity	

Does	not	recognise	life	

sciences	as	requiring	
integration	of	both	
experimental	&	
computational/model-
ling	approaches.	
Perceives	disciplines	as	
separate;	integration	

only	occurs	when/as	
directed.	Information,	
ideas	&	tools	that	are	
interdisciplinary	are	
used	without	question.	

Beginning	to	think	about	

life	sciences	as	requiring	
integration	of	both	
experimental	&	
computational/model-
ling	approaches.	
Recognises	that	
interdisciplinarity	is	

needed,	but	does	not	
know	how	(or	when)	to	
do	it,	&	requires	
direction.	Learning	the	
integrating	process;	
learning	strengths	&	
weaknesses	of	biological	
&	computational	

methods,	but	not	
sufficient	to	question	
assumptions	from	these	
&	other	disciplines.	

Understands	that	life	

sciences		integrate	both	
experimental	&	
computational/modelling	
approaches;	seeks	
guidance	about	how	&	
when	to	integrate.	
Developing	an	

understanding	of	the	
strengths	&	weaknesses	of	
biological	&	computational	
methods,	beginning	to	
question	fundamental	
assumptions	from	these	&	
other	disciplines	for	any	
given	scientific	problem	

(which	typically	arises	
from	others,	or	in	
conjunction	with	others).		

Collaboratively	integrates	

across	relevant	disciplines	
to	address,	&	solve,	
innovative	biological	
problems.	Tests	multiple	
avenues	to	triangluate	
solutions,	with	minimal	
guidance.	Recognises	the	

roles	of	interdisciplinary	
teams	in	the	research	
process,	&	the	importance	
of	integrating	
interdisciplinarity	early	on.	
Works	effectively	on	
interdisciplinary	teams	
with	minimal	guidance.			

Formulates	innovative	

biological	problems	that	
require	interdisciplinary	
solutions.	Integrates	
methods	&	results	to	derive	
&	contextualise	solutions	to	
biological	problems.	
Consistently	tests	multiple	

avenues	to	triangluate	
solutions,	while	exploiting	
relevant	findings	from	other	
disciplines.	Actively	builds	
interdisciplinary	teams,	as	
needed.		

Define	a	problem	
based	on	a	critical		
review	of	existing	
knowledge	

Can	recognise	a	problem	
that	is	explicitly	
articulated	or	concretely	
given,	but	cannot	derive	

one.	Unaware	of	the	
depth	&	breadth	of	‘the	
knowledge	base’	that	is	
or	could	be	relevant	for	
the	formulation	of	a	
problem.		Does	not	
recognise	design	

features	or	other	
evidence	as	the	basis	
of/support	for	problem	
articulation.	Does	not	
recognise	uncertainty	or	
how	this	affects	the	
formulation	of	solveable	
problems.		

Developing	awareness	
of	the	depth	&	breadth	
of	‘the	knowledge	base’	
that	is	or	could	be	

relevant	for	the	
formulation	of	a	
problem.	Cannot	
differentiate	gaps	in	
own	knowledge	from	
gaps	in	‘the	knowledge	
base’.	Developing	the	

ability	to	recognise	that	
uncertainty	may	have	
arisen	in	the	formulation	
of	solutions	to	problems.		

Beginning	to	use,	with	
guidance,	the	appropriate	
knowledge	base	to	address	
a	given	problem.	

Recognises	the	need	to	
consider	a	wider	scope	of	
knowledge	for	alternative	
solutions	to	a	problem	
common	across	contexts	
or	domains.	In	guided	
critical	reviews,	learning	to	

recognise	that	design	
features	&	evidence	base	
are	important	to	drawing	
conclusions.	Recognises	
the	role	of	uncertainty	in	
research,	&	that	
reproducibility	&	potential	
bias	should	be	considered	

for	every	result.		

Can	explore	&	critically	
review	the	relevant	
knowledge	base,	&	
collaboratively	articulate	a	

problem	based	on	that	
review.	Reviews	include	
assessment	of	relevance	
from	(potentially)	ancillary	
domains,	bias,	reproduci-
bility,	&	rigour;	recognises	
when	appropriate	&	

inappropriate	
methodology	is	used.	
Recognises	when	
incomplete	review	is	
provided	(by	themselves	
or	by	others).	Can	discern	
reproducible	from	non-
reproducible	results;	can	

identify	major	sources	of	
bias	throughout	the	
knowledge	base.	

Independently	defines	&	
articulates	a	theoretical	or	
methodological	problems	
based	on	a	critical	review	of	

the	relevant	knowledge	
base(s).	Knows	the	hallmarks	
of	questionable	research	
hypotheses	&	misalignment	
of	testing/statistics	with	
poorly	articulated	research	
problems;	consistently	finds	

&	identifies	sources	of	bias.	
Articulates	when	appropriate	
&	inappropriate	
methodology	is	used/	
reported.	Critical	review	&	
problem	articulation	
integrate	diverse	disciplinary	
perspectives	when	

appropriate/adaptable.		

Hypothesis	
generation		

When	directed,	follows	
instructions	to	test	
hypotheses;	does	not	
generate	them	&	may	

not	recognise	them	
without	explication.	
Uses	the	default	settings	
of	software	&	other	
tools,	rather	than	a	
hypothesis,	to	guide	any	
analysis.	Does	not	

question	methods	to	be	
used,	or	assumptions	of	
methods	that	are	used.	

When	directed,	uses	the	
default	settings	of	
software,	tools,	or	the	
GUI	to	test	hypotheses	

in	pre-planned	analyses;	
does	not	generate	
testable	hypotheses.	
Does	not	recognise	that	
hypotheses	may	be	
generated	&	tested	
within	the	intermediate	

steps	of	an	analysis.	
Developing	the	
understanding	that	all	
methods	involve	
assumptions.	

With	guidance,	can	1)	
leverage	tools,	software,	
data	&	other	technologies	
(GUI/programming)	to	test	

hypotheses;	2)	generate	
hypotheses	based	on	
either	the	data	or	the	
technology,	but	not	their	
combination/synthesis.	
Hypothesis	generation	
possible	in	highly	concrete	

&	fully	parameterised	
problems;	developing	the	
ability	to	identify	whether	
a	given	hypothesis	–	
including	one	of	their	own	
–	is	testable.	Learning	to	
recognise	that	experiment-
al	design	&	design	of	

software/programming	
solutions	include	
hypothesis	generation	to	
some	extent.	Developing	
the	abilities	to	identify,	&	
plan	to	address,	
assumptions	that	different	

hypotheses	necessitate.		

Collaboratively	integrates	
hypothesis	generation	into	
the	consideration	of	
literature,	data	&	analysis	

options.	Seeks	appropriate	
guidance	in	the	synthesis	
of	data	&	technology	to	
generate	novel,	testable	
hypotheses.	Considers	the	
process	of	hypothesis	
generation	&	testing	to	be	

iterative	when	this	is	
appropriate.	Hypothesis	
generation	is	done	with	
consideration	of	
reproducibility	&	potential	
for	bias,	&	takes	into	
account	the	most	clearly	
relevant	literature;	

recognises	that	less-
obviously	relevant	
literature	may	also	be	
informative	for	hypothesis	
generation.	
	
	

	

Independently	generates	
testable	hypotheses	that	are	
scientifically	innovative	as	
well	as	feasible	(possible	for	

economic	reasons,	time,	
impact,	etc.).	In	own	&	
others’	work,	recognises	
that,	&	articulates	how,	
hypothesis	generation	from	
planned	&	unplanned	
analyses	differ	in	their	

evidentiary	weight	&	their	
need	for	independent	
replication.	Fully	explores	all	
relevant	knowledge	base(s)	
to	support	rigour	&	
reproducibility,	&	to	avoid	
bias,	in	the	generation	of	
hypotheses.	

Experimental	

design	

Can	recognise	concrete	
features	of	experiments	
only	if	they	are	
described/given,	and	
they	match	basic	design	
elements	(e.g.,	
dependent,	independent	

variables).	Cannot	
design	data	collection	or	
experiments.	Unaware	
of	covariates	or	their	
importance	in	analysis	
or	interpretation.	Does	
not	recognise	the	

importance	of		design,	
data	collection,	data	
quality,	storage/access,	
analysis,	&	
interpretation	to	
promote	rigour	&	
reproducibility	in	
experimental	design.		

Can	identify	salient	
features	of	experiments	
that	are	described/given	
if	they	match	previously	
encountered	design	
elements,	but	cannot	
derive	them	if	they	are	

not	present.	Recognises	
covariates	if	mentioned,	
but	does	not	require	
formal	consideration	(or	
justification)	or	
evaluation	of	covariates.	
Does	not	recognise	that	

one	experiment	alone	
cannot	adequately	
address	meaningful	
biological	research	
problems.	Understands	
that	experimental	design	
involves	identifying,	
gathering,	storing,	

analysing,	interpreting,	
&	integrating	data	&	
results.	

Can	match	the	correct	
data-collection	design	to	
the	instruments	&	
outcomes	of	interest.	May	
include/exclude	co-
variates,	or	other	design	
features,	‘because	that	is	

what	is	done’,	without	
being	able	to	justify	their	
roles	in	the	hypotheses	to	
be	tested.	Developing	the	
understanding	that	weak	
experimental	design	yields	
weak	data	&	weak	results.	

Needs	assistance	in	con-
ceptualising	covariates	&	
their	potential	roles	in	the	
planned	analyses.	Begin-
ning	to	recognise	that,	&	
can	explain	why,	one	study	
is	usually	insufficient	to	
answer	a	given	research	

problems/solve	biological	
problems	adequately.	
Follows	templates	for	the	
identification,	gathering,	
storing,	analysing,	
interpreting	&	integrating	
of	data.	Learning	to	

consider	reproducibility	&	
rigour	in	experimental	
design,	&	to	question	
templates	that	do/do	not	
include	these	concepts.	

Recognising	that	explicit	
attention	to	experimental	
design	will	result	in	more	
informative	data;	designs	
experiments	in	
consultation	with	experts	
in	content	&	statistics.	

These	experiments	may	
include	power	calculation	
considerations,	if	relevant;	
modelling	requirements;	
measurement/sampling	
error	&	missing	data.	
Collaboratively	designs	

experiments	that	address	
the	need	for	
reproducibility	&	
sensitivity	analysis.	
Learning	to	conceptualise	
pilot	studies	&	sensitivity	
analyses.	Learning	to	
adapt	problems	so	that	

hypotheses	can	be	
generated	&	made	
testable	via	experiments.	

	

Independently	designs	
appropriate	&	reproducible	
experiments	&	other	data-
collection	projects,	using	
methodologies	that	are	
aligned	with	the	testing	of	
specific	hypotheses.	

Consistently	identifies	&	
justifies	choices	of	
instruments	&	outcomes	(&	
covariates	if	relevant).	
Collaborates	with	experts	as	
needed	on	appropriate	use	
of	advanced	methods,	

including	accommodating	
measurement	&	sampling	
error,	attrition	(if	needed)	&	
modelling	requirements;	can	
adapt	complex	problems	so	
that	hypotheses	can	be	
generated	&	made	testable	
via	experiments.	

Understands	&	can	exploit	
the	strengths	&	weaknesses	
of	experimental	design,	data	
&	modelling	approaches	with	
respect	to	the	biological	
problem	under	
consideration.	Uses	pilot	

studies	&	sensitivity	analyses	
appropriately.	

Identify	data	that	
are	relevant	to	the	
problem	

Uses	data,	as	directed.	
Does	not	find	relevant	
data;	cannot	describe	

what	makes	data	or	a	
given	data	resource	
‘relevant’	to	a	given	
problem.	
	

Correctly	uses	data	that	
are	provided	or	can	
follow	a	script/’recipe’	

to	obtain	(access,	
manage)	relevant	data	
to	which	they	are	
guided.	Cannot	
determine	whether	a	
given	data-set	or	type	is	
relevant	for	a	given	
problem,	but	is	

developing	an	
awareness	that	not	all	
data	are	equally	
relevant,	or	equally	well	

Can	initiate	a	search	for	
data	&	will	ask	if	uncertain	
about	the	relevance	for	

any	given	problem.	
Learning	how	to	identify,	
&	evaluate	strengths	&	
weaknesses	of,	data	
resources,	to	determine	
whether	a	given	data-set	
or	-type	is	relevant	for	a	
given	problem;	&,	with	

guidance,	how	to	leverage	
these	to	address	given	
research	problems.	
Learning	how	

Collaboratively	identifies	
relevant	data	resources.	
Understands	the	relative	

strengths	&	weaknesses	of	
data-sets	&	-types	for	
addressing	their	specific	
problem.	Learning	to	
address	&	formulate	
scientific	problems	(based	
on	recognised	gaps	in	the	
knowledge	base)	utilising	

relevant	data	resources.	In	
own	&	others’	work,	
recognises	that,	&	
articulates	how,	choices	

Identifies	data	that	are	
directly	relevant	to	a	
problem	of	own	or	others’	

devising.	Consistently	
identifies,	&	evaluates	
strengths	&	weaknesses	of,	a	
variety	of	data	resources	
that	can	address	a	problem	
or	help	to	formulate	it	more	
clearly;	recognises	if	the	
necessary	data	do	not	yet	

exist.	Justifies	the	relevance	
of	data-sets	to	a	given	
problem	in	terms	of	their	
individual	strengths	&	

suited,	to	all	research	
problems.	Developing	
awareness	of	the	
features	of	data/data	

resources	that	
constitute	‘relevance’,	&	
that	these	features	must	
be	assessed	before	
choosing	data	to	use.	

reproducibility	can	be	
affected	by	the	choice	(&	
features)	of	data.	

for	data	(collection	or	use)	
require	assumptions	&	
justification,	&	must	yield	
reproducible	results.	

weaknesses.	Articulates	
hypotheses,	&	designs	
experiments,	that	leverage	
strengths	in	the	data;	

includes	triangulating	data	or	
results	to	address	weakness-
es	in	the	data.	Identifies	
whether	data	appropriate	to	
the	specific	scientific	
question	were	used	when	
reviewing	proposals,	proto-

cols,	manuscripts	&/or	other	
documentation	describing	
data	&	research	results.	

Identify	&	use	
appropriate	
analytical	methods	

Uses	methods	that	are	
provided	&	in	a	given	
order	(i.e.,	a	pipeline;	&	
treats	workflows*	as	if	
they	are	pipelines).	Does	
not	identify	relevant	

methods;	cannot	
describe	what	makes	a	
method		‘relevant’	to	a	
given	problem.	
Unaware	that	methods	
&	software	have	default	
settings.	Does	not	

question	propriety,	
assumptions,	or	order	of	
methods	that	are	
employed;	focus	is	on	
the	superficial	attributes	
of	given	methods	&	
protocols.		

Uses	given	methods,	as	
directed,	&	learning	
about	the	concepts	of	
pipelines	&	workflows*;	
still	uses	workflows	as	if	
they	are	pipelines,	but	

beginning	to	attend	to	
decision	points.	Learning	
to	recognise	pros	&	cons	
of	methods/software,	
but	can’t	yet	effectively	
compare,	evaluate,	or	
rank	them.	Becoming	

aware	of	the	default	
settings	of	software	or	
methods	&	their	effects	
on	results;	&	beginning	
to	explore	&	inquire	
about	tailored	settings.	
Understands	that	more	

than	one	method/tool	
may	be	available	to	deal	
with	a	given	problem	or	
data	type,	but	can’t	
choose	effectively.	
Learning	about	
similarities	&	differences	

across	methods,	&	that	
choices	(particularly	of	
multiple	methodologies	
for	one	question)	should	
leverage	independence	
of	methods	to	support	
reproducible	results.	

Can	identify	methods,	
software,	&	pipelines	that	
are	relevant	for	a	given	
problem;	seeks	guidance	
about	the	best	approach.	
Learning	to	evaluate/rank	

&	justify	alternative	
methods	in	terms	of	
general	features	of	their	
efficiency	&	relevance	for	
the	given	research	
problem.	Beginning	to	
recognise	that	a	‘pipeline’	

involves	only	the	choice	of	
which	one(s)	to	use;	while	
a	‘workflow’	requires	
many	choices	&	decisions.	
With	guidance,	seeks	to	
identify	&	implement	
appropriate	workflows	to	

address	given	research	
problems.	Learning	how	
reproducibility	can	be	
affected	by	the	choice	&	
implementation	of	
methods,	including	
independent	replication	of	

essentially	the	same	
method	vs.	independent	
replication	using	diverse	
methods.	

Collaboratively	considers	
the	knowledge	base,	&	
features	of	the	relevant	
data	&	analysis	options,	in	
identifying	the	most	
appropriate	approach(es)	

to	tackle	a	scientific	
question.	Uses	appropriate	
analytic	methods,	
pipelines,	&	workflows,	
recognising,	&	taking	
advantage	of	the	fact,	that	
these	may	represent	

distinct	approaches	to	the	
same	problem.	Knows	
when	&	how	to	control	
False	Discovery	Rates	
(FDR)	to	promote	
reproducible	results	across	
methods.	In	own	&	others’	

work,	recognises	that,	&	
articulates	how,	choices	
for	methods,	pipelines,	&	
workflows	require	
assumptions	&	
justification,	&	must	yield	
reproducible	results.	

	

Recognises	if/when	the	
necessary	methods,	
pipelines,	&	workflows	to	
tackle	a	scientific	question	
do	not	yet	exist.	Consistently	
controls	FDR	to	promote	

reproducible	results.	
Identifies	whether	
appropriate	analytical	
methods	were	used	when	
reviewing	proposals,	
protocols,	manuscripts,	&/or	
other	documentation	

describing	methods,	
pipelines,	workflows,	&	
research	results.	
	

Interpretation	of	
results/output	

Treats	the	output	of	a	
program	as	the	

final/complete	result	–	
with	no	interpretation	
required	-	&	is	unaware	
of	the	concepts	of	
validation	&	cross-
validation	or	their	
importance	for	

interpretation	of	results/	
output.	Uses	the	p-value	
to	indicate	‘truth’	in	
statistical	analysis.	Over-
interpretation	is	typical.	
Unaware	of	the	
importance	of	FDR	

controls.	Does	not	seek	
coherence	in/recognise	
incoherence	of	their	
results	with	the	analysis	
plan	or	pipeline;	is	
unable	to	align	methods,	
results,	&	interpretation.	

Interpretation	of	results	
depends	on	p-values,	

but	understanding	of	p-
values	is	incomplete.	
Learning	to	recognise	
that	interpretation	of	
output	critically	depends	
on	methods	used	&	the	
pipeline	in	which	the	

results	are	obtained.	
Developing	awareness	
of	FDR	controls.	
Learning	that	the	
interpretation	of	their	
immediate	results	could	
be	an	interim	step	in	an	

overall	problem-solving	
context.		

Seeks	guidance	to	
interpret	results/output,	

including	considerations	of	
alignment	of	methods	&	
results.	Understands	that	
the	p-value	represents	
evidence	about	the	null	
hypothesis,	not	the	study	
hypothesis,	but	does	not	

consistently	avoid	
reification.	Recognises	
that,	but	does	not	always	
act	as	if,	very	small	p-
values	are	not	‘highly	
significant	results’.	Can	
apply	FDR	controls,	but	

does	so	only	when	
reminded/	required.	
Recognises	when	the	
interpretation	of	their	
immediate	results	is	an	
interim	step	in	an	overall	
problem-solving	context.	
	

Can	discern,	based	on	
immediate	results,	

methods	&	hypotheses,	
whether	more	
experiments	&/or	data	
processing	are	required	for	
robust	result	
interpretation;	
collaboratively	uses	the	

appropriate	knowledge	
base	&	data	resources	to	
interpret	results;	resists	
reification	&	is	committed	
to	good-faith	efforts	to	
falsify	hypotheses.	
Consistently	&	

appropriately	uses	FDR	
controls.		

Interprets	own	&	others’	
results	critically	&	with	

respect	to	the	analysis	plan;	
seeks/promotes	alignment	
of	methods,	results	&	
interpretation.	Prioritises	
interpretable	&	reproducible	
results	above	any	other	
outcome	(e.g.,	publication	or	

completion	of	tasks/project),	
&	insists	on	FDR	controls	&	
other	sensitivity	analyses	in	
all	work.	Avoids	problems	
that	can	arise	in	interpreting	
results,	including	bias,	
reification,	&	other	failures	

of	positivism.	Evaluates	the	
quality	&	appropriateness	of	
procedures,	statistical	
analyses	&	models	when	
reviewing	papers	&	projects/	
proposals,	based	on	the	
writers’	–	&	own	-	
interpretation	of	results.			

Draw	&	
contextualise	

conclusions	

Does	not	draw	

appropriate	conclusions	
from	given	results;	
without	direction,	will	

Learning	fundamentals	

of	how	appropriate	
conclusions	are	drawn	
from	results,	but	may	

With	guidance,	can	draw	

conclusions	in	own	work	
that	are	coherent	with	the	
research	

Can	extract	scientific	

meaning	from	data	
analysis	&	knows	the	
difference	between	

Expertly	contextualises	

results	&	conclusions	with	
prior	literature,	across	
experiments	or	studies,	&	

not	even	contextualise	
conclusions	with	the	
protocol	that	was	
followed.	Not	aware	of	

the	difference	between	
conclusions	about	the	
null	hypothesis	&	those	
about	the	research	
hypothesis.	Conclusions	
may	over-	or	under-
state	results	&	be	driven	

by	p-values	or	other	
superficial	cues.	Does	
not	recognise	the	
importance	of	
identifying	&	
acknowledging	
methodological	
limitations,	or	their	

implications,	for	
conclusions.	Does	not	or	
cannot	apply	rules	of	
logic	to	scientific	
arguments,	&	commits	
logical	fallacies	when	
drawing	conclusions.		

not	be	able	to	draw	
those	conclusions	from	
given	results	
themselves.	Learning	to	

differentiate	between	
conclusions	about	the	
null	hypothesis	&	those	
about	the	research	
hypothesis.	Learning	
why	p-value-driven	
conclusions,	&	the	lack	

of	FDR	controls,	are	not	
conducive	to	
reproducible	work.	
Conclusions	are	
generally	aligned	with	
given	results,	but	when	
multiple	methods	are	
used,	does	not	recognise	

the	dependencies	
among	methods	that	
appear	to	reinforce,	but	
actually	replicate,	
results.	Conclusions	are	
neither	fully	
contextualised	with	the	

rest	of	a	document	
(write-up,	paper,	etc.)	or	
study/	experiments/	
paradigm	
(contextualisation	for	
coherence),	nor	with	the	
literature	(critical	

contextualisation).		

hypothesis/hypotheses	&	
across	the	entire	
manuscript/writeup	(as	
appropriate).	Learning	to	

critically	contextualise	
results;	is	able	to	draw	the	
most	obvious	conclusions,	
but	struggles	to	see	
patterns,	or	draw	more	
subtle	conclusions.	
Learning	that	‘full’	

contextualisation	of	
conclusions	requires	
consideration	of	
limitations	deriving	from	
methods	&	their	
applications,	&	their	
effects	on	results	&	
conclusions.	Learning	to	

recognise	how	
independence	of	multiple	
methods	applied	to	similar	
data/problems	supports	
reproducible	conclusions.	

statistical	&	biological	
significance.	In	their	own	&	
others’	work,	seeks	
competing,	plausible	

alternative	conclusions.	
Can	judge	the	scientific	
importance	of	their	
results,	&	draws	
conclusions	accordingly.	
Can	draw	conclusions	&	
contextualise	results	with	

respect	to	an	entire	
manuscript/writeup	in	a	
given	project	or	study,	or	
with	literature	(as	
appropriate).	Can	detect	
when	conclusions	are	not	
aligned	with	other	aspects	
of	the	work	(e.g.,	

introduction/	background,	
methods	&/or	results,	or	
other	experiments	in	the	
project).	Gives	careful	
consideration	to	
limitations	deriving	from	
the	method	&	its	

application	in	a	specific	
study.	Sees	patterns,	&	
perceives	more	subtle	
conclusions	than	earlier-
stage	scientists,	&	
collaborates	to	fully	
articulate	&	motivate	

them.	Writes	the	
Discussion	&	Conclusions	
sections,	including	
limitations,	of	own	articles,	
with	collaboration.	

within	any	given	document	
(e.g.,	manuscript,	writeup,	
etc.).	Strives	to	fully	
contextualise	conclusions	in	

own	work,	&	also	requires	
this	in	others’	work.	Draws	&	
contextualises	more	subtle	
conclusions	than	at	earlier	
stages.	Can	conceptualise	
new	experiments	based	on	
the	lack	of	robust	&/or	

defensible	conclusions	in	
others’	work.	Carefully	
considers	consistency	of	
conclusions	with	the	other	
parts	of	own	or	others’	work.		
	

Communication	 Does	not	communicate		
scientific	information	
clearly	or	consistently;	is	

unaware	of	community	
standards	for		scientific	
communication.	
Generally	relies	on	lay	
summaries	to	support	
own	communication;	
does	not	recognise	that	
using	original	literature	

strengthens	scientific	
communication.	Does	
not	differentiate	
appropriate	&	
inappropriate	scientific	
communication,	nor	
understand	the	ethical	

implications	of	each.		

Learning	both	to	
recognise	the	value	of	
clear	communication,	&	

about	the	role	of	
communication	in	
sharing	&	publishing	
research,	data,	code,	
data	management,	tools	
&	resources.	Developing	
an	awareness	of	
community	standards	

for	scientific	
communication,	&	that	
these	include	
documenting	code,	
annotating	data,	&	
adding	appropriate	
metadata.	Does	not	

adapt	communication	to	
fit	the	receiver.	Learning	
to	differentiate	
appropriate	&	
inappropriate	scientific	
communication,	but	
does	not	yet	understand	

that	transparency	in	all	
communication	
represents	ethical	
practice,	even	when	the	
desired	results	have	not	
been	achieved.	

Understands	the	roles	of	
sharing	&	publishing	
research,	data,	code,	data	

management,	tools	&	
resources	in	scientific	
communication.	Seeks	
guidance	so	that	own	
communication	is	
coherent,	accurate	&	
consistent	with	
community	standards	

(e.g.,	following	FAIR‡	
principles;	ensuring	
socially	responsible	
science).	Learning	to	
document	code,	annotate	
data,	&	add	appropriate	
metadata	–	&	the	

importance	of	these	(as	
appropriate	given	their	
research/context)	for	
sharing	&	integration.	
Learning	the	importance	
of	adapting	
communication	to	fit	the	

receiver,	seeking	
opportunities	to	practice	
this.	Learning	that	
transparency	in	all	
communication	represents	
ethical	practice,	even	
when	the	desired	results	

have	not	been	achieved.	

Consistently	&	proficiently	
uses	technical	language	to	
correctly	describe	what	

was	done,	why,	&	how.	
Sufficient	consideration	
given	to	limitations,	with	
explicit	contextualisation	
of	results	consistently	
included	in	the	
communication	of	results	
&	their	interpretation.	Can	

adapt	communication	to	
fit	the	receiver;	recognises	
that	sometimes	
communication	must	be	
consistent	with	community	
standards	beyond	their	
own	discipline.	

Appropriately	
documents/annotates	all	
data,	code,	tools,	&	
resources	for	sharing,	
integration,	&	re-use.	
Understands	that	
transparency	in	all	

communication	represents	
ethical	practice.		

Is	an	expert	communicator	&	
reviewer	of	scientific	
communication;	adheres	to	

&	promotes	disciplinary	
standards	for	
communication.	
Communicates	in	a	manner	
that	is	consistent	with	
standards	across	
communities	beyond	their	
own	discipline,	as	

appropriate.	Ensures	
communication	is	
appropriate	for	a	target	
audience,	expertly	adapting	
to	fit	the	receiver(s).	
Communication	is	
transparent,	&	appropriate	

to	support	reproducibility	–	
&	thereby,	ethical	practice	-	
in	every	context.		
	

*Framework of the workflow supports decisions; workflow is not necessarily linear and can be multidirectional and iterative; any point 

can be re-iterated, or new starts from within the workflow can be made. A pipeline is unidirectional, not iterative within its structure (it 
is ballistic: once initiated, it runs), and has no decision points. Pipelines can exist within workflows, but workflows do not exist in 

pipelines. 
‡ FAIR: Findable, Accessible, Interoperable, Reusable. 

A descriptive ‘3D’ table
KSAs, Stages, PLDs 



KSA Novice Beginner Apprentice J1 Journeyman J2 Journeyman

PK biology Basic knowledge of biology Advanced knowledge of 
biology & basic knowledge 
of bioinformatics methods

Integrates experimental &
bioinformatics sources for 
data & knowledge

Sufficient knowledge of 
biological systems to be 
able to draw functional 
conclusions from results

Independently solves 
biological problems that
are innovative & move the 
field forward

PK computational 
methods

Basic knowledge of 
computational methods

Integrate 
interdisciplinarity

Doesn’t recognise that life
sciences require 
integration of experimental 
& computational 
approaches

Define a literature-
based problem 

Can recognise a problem 
that is explicitly articulated 
but can’t derive one

Hypothesis generation Doesn’t generate 
hypotheses & may not 
recognise them without 
explanation

Experimental design Can’t design data collection 
or experiments

Identify relevant data Can’t describe what makes 
data relevant to a problem

Identify & use 
appropriate methods

Doesn’t identify methods 
relevant to a problem

Interpretation of 
results

Treats the output of pro-
grams as the final result, 
without interpretation

Draw & contextualise
conclusions

Doesn’t draw appropriate 
conclusions from results

Communication Doesn’t communicate
scientific results clearly or 
consistently

Ethical practice Learning how to recognise 
intellectual property & 
scientific contributions

29/09/2021 9

Stages (columns)
Developmental trajectory, from less 

(novice) to more expert (journeyman)

Knowledge, Skills & Abilities (KSAs) (rows)

Performance Level Descriptors (PLDs)
(cells) Describe performance at each stage

Jessica Lindvall
ELIXIR-SE
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Higher-order 
‘critical’ 

thinking skills

Lower-order thinking skills

EX
P

ER
IM

EN
TA

L D
ESIG

N

Early UG

Early PhD, 
late Masters

MASTER

European Guild Structure
Apprentice, Journeyman, Master 

Foundational 
discipline-specific 
KSAs

KSAs based on the 
scientific-method

Ethics B1
B2

B3
B4

B5
B6



PLDs describe what it should 
look like as learners develop
from less to more expert 
demonstration of each KSA

Performance-level descriptors
Novice



Performance-level descriptors
Beginner

PLDs describe what it should 
look like as learners develop
from less to more expert 
demonstration of each KSA



Performance-level descriptors
Apprentice

PLDs describe what it should 
look like as learners develop
from less to more expert 
demonstration of each KSA



Performance-level descriptors
Journeyman 1

PLDs describe what it should 
look like as learners develop
from less to more expert 
demonstration of each KSA



Performance-level descriptors
Journeyman 2

PLDs describe what it should 
look like as learners develop
from less to more expert 
demonstration of each KSA



EX
P

ER
IM

EN
TA

L D
ESIG

N

Early UG

Early PhD, 
late Masters

MASTER

Its structure allows it to be 
adapted to related disciplines 
simply by changing the 
discipline-specific KSAs

A standard framework
for developing scientific & 
discipline-specific KSAs, 
from less to more expert

MR-Bi



APPLICATION 1

Professional development
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Professional development
A life-science PI wants to 
become self-sufficient in basic 
bioinformatics techniques 

EX
P

ER
IM

EN
TA

L D
ESIG

N

Early UG

Early PhD, 
late Masters

MASTERMR-Bi

Recognises him or herself 
as a J2 life scientist, 
someone who…



Performance-level descriptors
Journeyman 2

…makes predictions, 
evaluates relevant methods, 
& can generalise…



Professional development
A life-science PI wants to 
become self-sufficient in basic 
bioinformatics techniques 

EX
P

ER
IM

EN
TA

L D
ESIG

N

Early UG

Early PhD, 
late Masters

MASTERMR-Bi

Recognises him/herself as 
a beginner in 
computational methods…



Performance-level descriptors
Beginner

…who wants to 
understand how to code, 
& apply bioinformatics 
tools in their work…

La
te

 u
n

d
e

rg
ra

d
u

at
e

, e
ar

ly
 M

as
te

rs



Professional development
A life-science PI wants to 
become self-sufficient in basic 
bioinformatics techniques 

Considers him/herself 
as J1 in identifying 
relevant data…

EX
P

ER
IM

EN
TA

L D
ESIG

N

Early UG

Early PhD, 
late Masters

MASTERMR-Bi



…but needs help to identify 
relevant bioinformatics data 
resources, & to evaluate
their relative strengths & 
weaknesses…

Performance-level descriptors
Journeyman 1

La
te

 P
h

D
, e

ar
ly

 P
o

st
d

o
ct

o
ra

l F
e

llo
w



Recognises him/herself as a 
beginner in identifying & using 
appropriate bioinformatics 
methods, & interpreting results…

Professional development
A life-science PI wants to 
become self-sufficient in basic 
bioinformatics techniques 

EX
P

ER
IM

EN
TA

L D
ESIG

N

Early UG

Early PhD, 
late Masters

MASTERMR-Bi



Performance-level descriptors
Beginner

…& to fully 
understand
p-values…

La
te

 u
n

d
e

rg
ra

d
u

at
e

, e
ar

ly
 M

as
te

rs

…needing help to apply
bioinformatics 
methods & to 
understand pipelines…



Professional development
A life-science PI wants to 
become self-sufficient in basic 
bioinformatics techniques 

EX
P

ER
IM

EN
TA

L D
ESIG

N

Early UG

Early PhD, 
late Masters

MASTERMR-Bi

Recognises him/herself as 
an apprentice in drawing 
conclusions, & ethical 
practice…



…but needs help 
to contextualise 
& synthesise
coherent 
bioinformatics 
conclusions…

Performance-level descriptors
Apprentice

…& to apply
bioinformatics-relevant 
ethical practices…



Professional development
A life-science PI wants to 
become self-sufficient in basic 
bioinformatics techniques 

Tool for self-guidance
Helps focus on specific training 
needs; provides key insights about 
this individual’s needs to instructor

EX
P

ER
IM

EN
TA

L D
ESIG

N

Early UG

Early PhD, 
late Masters

MASTERMR-Bi
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Course design
A university teacher wants to 
develop an introductory 
module for a basic 
bioinformatics MSc course

Identify the KSAs
relevant to the course 
& appropriate 
developmental stages

Say, from foundational –
beginner-level – biology, 
computational methods & 
ethical practice…



Course design
A university teacher wants to 
develop an introductory 
module for a basic 
bioinformatics MSc course

…to apprentice-level applying 
appropriate methods, 
interpreting results, drawing 
conclusions & communicating



Course design
A university teacher wants to 
develop an introductory 
module for a basic 
bioinformatics MSc course

Follow a structured 
paradigm…
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4 Nicholls’ five phases of curriculum design  

The	backdrop	for	ou
r	considerations	of	c

ourse	design	is	Nich
olls’	

paradigm	for	curriculum	development,	illustrated	in	F
igure	2.	Its	

five-phase	structure
	has	been	briefly	sum

marised	by	Tractenber
g	et	

al.
2,	as	follows:	

1. Select	LOs;	

2. Select	or	develop
	LEs	that	will	help	lea

rners	achieve	the	LO
s;	

3. Select	or	develop
	content	relevant	to	

LOs;	

4. Develop	assessm
ents	to	ensure	learne

rs	progress	toward	L
Os;	

5. Evaluate	the	effe
ctiveness	of	LEs	for	l

eading	learners	to	LO
s.		

Figure	2.	Nicholls’	ph
ases	of	curriculum	design	&	their	depe

ndencies.	

For	each	phase,	key	
considerations	are	sh

own	(diamonds).	Where	these	

aren’t	satisfied,	that
	or	previous	phases	s

hould	be	revisited	(re
d	arrows),	

otherwise	it	is	safe	to
	move	to	the	next	phas

e(s)	(green	arrows).	
When	all	

considerations	are	sa
tisfied,	the	curriculum

	or	course	can	be	

characterised,	with	c
oncrete	evidence,	as

	successful	(star).	

As	can	be	seen	fro
m	Figure	2,	the	model’s	phases	are	i

nter-

dependent;	all	are	u
ltimately	dependent	on	

the	first	–	defining	L
Os.	

he	phases	are	itera
tive:	this	means	that	LOs	influe

nce	

Moreover,	t

later	decisions,	but
	later	decisions	may	also	reflect	bac

kwards,	

thereby	providing	o
pportunities	to	che

ck	for	alignment	of	each	

phase	to	the	target	
LOs	(in	other	words

,	to	ensure	that	suc
cessive	

phases	are	mutually	consistent	w
ith,	and	supportive	

of,	the	LOs).	

Thus,	the	role	of	LO
s	is	pivotal:	they	must	have	specific	cha

racteris-

tics	to	function,	and	
support	each	of	the	

other	phases	as	they
	do.		

Figure	2	illuminates	an	important	feature	of	th
e	model:	that	LOs	

are	the	starting	poin
t,	and	drive	all	decis

ion-making.	This	is	just	as
	

true	for	courses	as	
it	is	for	programmes

7.	Missing	from	the	model,	

however,	is	the	de
pendence	of	LOs	o

n	a	hierarchy	of	co
gnitive	

complexity	that	establis
hes	a	developmental	trajectory,	like

	that	

seen	in	Bloom’s	taxonomy.	We	reflect	on	this	cru
cial	point,	and	its	

relevance	for	course
	design,	in	the	disc

ussion	of	each	of	th
e	five	

phases	below.		

4.1 Define intended LOs  

Just	as	for	curricula,
	Phase	1	of	course	d

esign	begins	with	sta
ting	

the	LOs	(as	already	n
oted,	LOs	are	explici

t	statements	of	the	KSAs	–	

and	requisite	level	
of	cognitive	complexity	–	that	learn

ers	are	

expected	to	achieve
,	and	be	able	to	dem

onstrate,	on	completion	of	

a	period	of	instructio
n).	To	help	formulate	LOs,	it’s	important	to	take	

a	step	back	and	thin
k	about	what	you	ai

m	to	achieve	(i.e.,	wha
t	are	

your	TGs	and	the	
KSAs	you	intend	to

	be	achieved?),	ho
w	you	

propose	to	get	there
,	and	how	you’ll	kno

w	you	succeeded.	M
essick

11	

encapsulated	this	pr
ocess	in	the	form	of	three	succinct	qu

estions:	

1. What	KSAs	are	the	targ
ets	of	instruction	(an

d	assessment)?		

2. What	learner	actions/b
ehaviours	will	reveal

	these	KSAs?		

3. What	tasks	will	elicit	th
ese	specific	actions	o

r	behaviours?	

These	questions	we
re	originally	posed	i

n	1994	in	the	conte
xt	of	

assessment.	Their	focus	on	K
SAs	–	the	LOs	–	thus

	guides	not	only	the	

creation	of	relevant
	tasks	(to	reveal	the

	target	KSAs)	but	al
so	the	

rational	development	of	appropriate	a
ssessments:	i.e.,	they	provi

de	

a	framework	for,	and	clarif
y,	what	to	assess.	Th

e	questions	can	thus
	

support	all	phases	o
f	course	development,	starting	with	th

e	selec-

tion	of	intended	KSA
s	stated	in	a	set	of	LO

s.	

Writing	coherent	LOs	
is	challenging:	they	

must	contain	appropr
i-

ate	(Bloom’s)	verbs	(Figure	1)	t
hat	express	measurable,	observab

le	

and	assessable	actio
ns,	accurately	descri

bing	what	successfu
l	learn-

ers	will	be	able	to	d
o	–	and	at	what	lev

el	of	cognitive	complexity	–	

after	instruction.		

Various	characteristi
cs	of,	and	principles	

for	articulating,	LOs	
have	

been	published
16,17:	some	of	these	are	listed	

briefly	in	the	box	bel
ow	

(further	information	and	additional
	guidance	on	how	to

	write	effec-

tive	LOs	is	given	in	o
ther	Guides	from	the	Professional	Gu

ide	series).	

Given	their	detail	a
nd	complexity,	and	the	importance	of	aligning

	

the	instructional	inp
uts	you	devise	with

	the	outcomes	for	learners	

you	intend,	it	can	b
e	hard	to	know	wh

ere	to	start.	This	p
ossibly	

explains	why	it	may	feel	easier	to	be
gin	developing	a	co

urse	by	

selecting	its	content
	rather	than	first	tryi

ng	to	understand	its
	impact	

on	student	learning.
	Nevertheless,	ensur

ing	that	target	LOs	m
eet,	or	

are	consistent	with,
	the	characteristics	

outlined	in	the	box
	below	

helps	to	promote	better	alignment	of	instructional	i
nputs	and	learn-

er	outcomes.		

In	short,	when	defin
ing	LOs,	the	key	que

stion	to	ask	is,	are	t
hey	

Specific,	Measurable,	Achievab
le,	Realistic	and	Tim

e-bound	–	i.e.,	

are	they	SMART?	If	they	don’t	s
atisfy	this	test,	they

	should	be	re-

vised;	only	when	th
ey	meet	these	criteria	is

	it	safe	to	progress	
to	

Phase	2,	as	shown	in
	Figure	2.	Ultimately,	LOs	provide	th

e	necessary	

structure	and	contex
t	for	decision-making	by	instructors	

(and	learn-

ers),	hence	their	prim
ary	role	in	course	des

ign.			

Learning	outcomes		

LOs	should:	

• be	specific	&	well	de
fined:	LOs	should	con

cisely	state	the	speci
fic	

KSAs	that	learners	sh
ould	develop	as	a	re

sult	of	instruction;	

• be	realistic:	LOs	must	be	attainable	gi
ven	the	context	and

	re-

sources	available	fo
r	instruction,	and	co

nsistent	with	learne
rs’	

abilities,	developmental	levels,	prerequ
isite	KSAs,	and	the	t

ime	

needed	vs.	time	available	to	achiev
e	them;	

• rely	on	active	verbs,
	phrased	in	the	futu

re	tense:	LOs	should
	be	

stated	in	terms	of	what	successful
	learners	will	be	able

	to	do	as	

a	result	of	instructio
n;		

• focus	on	learning	pro
ducts,	not	the	learni

ng	process:	LOs	shou
ld	

not	state	what	instr
uctors	will	do	durin

g	instruction,	but	w
hat	

learners	will	be	able
	to	do	as	result	of	ins

truction;	

• be	simple,	not	compound:	LOs	shouldn
’t	include	compound	

statements	that	join	two	or
	more	KSAs	into	one	sta

tement;	

• be	appropriate	in	n
umber:	LOs	should	be	

deliverable	and	as-

sessable	within	the	t
ime	available	for	instru

ction;	

 • support	assessment	that	generates	
actionable	evidence

:	here,	

actionable	means	supportive	of	a
	decision,	or	taking	

some	ac-

tion	by	a	learner	or	i
nstructor. 
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EXERCISES	

1	Think	of	a	course	you	currently	run,	plan	to	run	or	have	run	in	the	past.	Are	its	intended	LOs	stated?	If	not,	try	to	jot	a	few	down.		2	Now	consider,	are	your	LOs	SMART?	If	any	of	them	don’t	meet	the	SMART	criteria,	try	revising	them	as	follows:	select	an	active	verb	that	can	(in	principle)	be	observed	&	assessed,	&	complete	the	sentence,	“At	the	end	of	this	course,	learners	will	be	able	to...”	(if	it	helps,	review	the	verbs	listed	in	Figure	1).	It’s	important	to	focus	here	on	what	learners	will	be	able	to	do	at	the	end	of	instruction:	e.g.,	will	they	be	able	to	describe	its	content?	Explain	a	concept?	Implement	an	algorithm?	Solve	a	problem?	Evaluate	results?	3	To	determine	how	well	you’ve	structured	your	LO,	visit	the	Intended	Learning	 Outcome	 Advisor:	 https://web.cs.manchester.ac.uk/	iloadvisor	&	paste	your	phrase	into	the	input	box.	Press	the	‘SUBMIT’	button.	How	well	did	you	do?		4	Consider	revising	your	phrase	if	the	Advisor	identified	any	issues.	Consider	writing	further	LOs;	test	each	using	the	Advisor.	

4.2 Select LEs that will lead to the LOs  Phase	2	involves	identifying	the	most	appropriate	LEs	to	lead	learners	to	the	intended	LOs.	It’s	important	to	appreciate	that	different	LEs	can	lead	learners	to	demonstrate	different	Bloom’s-level	accomplishments:	e.g.,	lectures	differ	from	problem-sets	–	solving	problems	helps	learners	to	work	with,	and	manipulate,	information	 rather	 than	passively	 listening	 to	 it;	 similarly,	 lab	exercises	differ	from	writing	computer	programs	–	writing	original	code	affords	learners	the	opportunity	to	create	something	new	rather	than	simply	following	instructions.	Some	example	LEs	are	listed	in	Table	1,	together	with	the	Bloom’s	level	and	the	kinds	of	TG	and	LO	that	each	may	support.	
Having	defined	SMART	LOs	in	Phase	1,	Phase	2	thus	hinges	on	choosing	the	most	appropriate	LEs	to	best	lead	learners	towards	them:	if	LOs	include,	for	example,	being	able	to	write	a	computer	program,	then	the	LEs	must	allow	learners	to	apply	the	knowledge	they’ve	acquired	and	to	demonstrate	that	they’ve	written	a	piece	of	functional	code:	i.e.,	LEs	and	LOs	must	be	aligned	(if	they	aren’t,	this		

Table	1	Sample	learning	experiences	&	the	highest	Bloom’s	level	that	each	may	support.	Examples	of	the	kinds	of	teaching	goal	that	such	

LEs	may	underpin	&	the	kinds	of	learning	outcomes	they	may	promote	are	also	shown.	
Learning	
experience	

Highest	Bloom’s	
levels	supported	

Example	TG(s)	
This	LE	will	allow	me	to…	

Example	LO(s)	
Learners	will	be	able	to…	

Lecture,	
webinar	

Remember,	
Comprehend	

Inspire	learners,	ignite	learners’	enthusiasm,	clarify/explain	a	concept,	provide	an	overview,	give	context,	summarise	content	

· list	the	key	points	of	the	lecture/webinar		· summarise	take	home	message(s)		
Exercise,	
practical		

Apply,	Analyse	 Help	learners	digest	course	materials,	solve	typical	problems,	apply	knowledge,	show	how	to	do	things	with	appropriate	guidance,	give	an	idea	of	how	a	tool	works	

· follow	a	set	of	instructions	or	protocol	· calculate	a	set	of	results	or	outcomes	from	a	given	protocol		
Flipped	class	 Apply,	Analyse	 Teach	learners	how	to	formulate	questions,	help	learners	to	memorise	new	information	&	con-cepts,	or	analyse	&	understand	course	materials	

· summarise	the	content	material		· ask	appropriate	questions	
Peer	
instruction	

Synthesise,	Evaluate	 Prepare	learners	to	defend	an	argument,	give	learners	opportunities	to	explain	things,	thereby	helping	to	develop	critical	thinking	&	awareness	

· explain	how	they	solved	an	exercise	· evaluate	others’	choices/decisions	· diagnose	errors	in	the	exercise-solving	task	

Group	
discussion	

Synthesise,	Evaluate	 Give	learners	opportunities	to	practice	questioning,	develop	new	ideas	&	critical	thinking	
· communicate	their	own	ideas		
· defend	their	own	opinions		

Group	work		 Synthesise,	Evaluate	 Promote	collaborative	work	&	peer	instruction,	provide	opportunities	for	giving/receiving	feedback,	&	digesting	course	materials	

· provide	feedback	on	their	peers’	work	· share	ideas	
· explain	the	advantages	of	team-work		

Problem-
solving		

Synthesise,	Evaluate	 Promote	learner	abilities	to	identify	&	evaluate	solutions,	develop	new	ideas,	make	decisions,	evaluate	decision	effectiveness,	troubleshoot	

· diagnose	faulty	reasoning	or	an	underper-forming	result	
· correct	errors	

	
	

can	lead	directly	to	a	gap	between	instructional	inputs	and	intended	outcomes,	which	is	one	reason	why	course	evaluation	to	detect	such	misalignments	 is	so	crucial).	 If	LEs	don’t	satisfy	this	criterion,	alternative	LEs	should	be	found,	or	the	LOs	should	be	revisited	and	revised	before	progressing	to	Phase	3	(as	shown	in	Figure	2).	
KEY	TERMS	

Exercise:	an	activity	designed	to	help	learners	to	mentally	put	into	practice	learned	skills	&	knowledge	Flipped	class:	a	learner-centred	approach	in	which	students	are	intro-duced	to	new	topics	prior	to	class;	class	time	is	then	used	to	explore	those	topics	in	greater	depth	via	interactive	activities	Group	discussion:	an	in-class,	learner-centred	approach	in	which	stu-dents	discuss	ideas,	solve	problems	&/or	answer	questions,	guided	by	the	instructor	

Group	work:	a	learner-centred	approach	in	which	students	are	organ-ised	into	groups	(&	perhaps	assigned	specific	roles)	&	are	given	tasks	to	perform	collaboratively		
Lecture:	a	didactic	approach	in	which	oral	presentation	is	used	to	de-scribe	&	explain	concepts	&	to	impart	facts		Peer-instruction:	an	interactive,	in-class,	learner-centred	approach	in	which	groups	of	two	or	more	students	briefly	discuss	a	question	or	assignment	given	by	the	instructor	Practical:	an	activity	to	put	into	practice	learned	skills	&	knowledge,	generally	in	a	lab	setting	

Problem-solving:	a	learner-centred	approach	in	which	students	are	required	to	systematically	investigate	a	problem	by	building	or	de-termining	the	best	strategy	to	solve	it	(using	what	is	known	to	dis-cover	what	is	not	known)		
Webinar:	a	lecture	delivered	online	
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LEs aligned 
with LOs?

Supports LEs? 
Promotes LOs?

Simple, measurable, 
achievable, realistic, 

time-bound?

Aligned with LEs?
Supports progress 

towards LOs? 

LOs achievable by most 
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Phase 1
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Start by articulating 
learning outcomes

Statements detailing what 
students will be able to do & the 
teacher will be able to assess



LO1: explain the Central Dogma

Learning outcomes
are phrased actively

LO2: describe the challenges of gene 
prediction in terms of gene structure

LO3: list popular databases 
& protein sequence/3D 
structure analysis tools

LO4: search databases using 
BLAST or other software tools

By the end of this course, 
students will be able to:



LO7: synthesise results from 
different analyses to draw 
preliminary conclusions 
about the likely functions of 
protein sequences

LO6: analyse search outputs 
to determine the biological 
significance of results

LO5: apply fingerprint & HMM 
search tools to identify the family 
to which protein sequences belong

LO8: present results 
to a lay audience

By the end of this course, 
students will be able to:



CONCLUSIONS
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 The MR-Bi provides a standard framework for developing scientific & discipline-specific 

KSAs, from less to more expert

 Its structure allows it to be adapted to related disciplines simply by changing its 

discipline-specific KSAs

 It’s a multi-layered tool with applications in professional development & course design

 It’s not as scary as it looks – why not try it?!



THANKS FOR YOUR ATTENTION!
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MR-Bi paper, PLoS ONE: doi.org/10.1371/journal.pone.0225256

Curriculum Guidelines, F1000R: doi.org/10.7490/f1000research.1118395.1

Curriculum Guidelines, SocArXiv: osf.io/preprints/socarxiv/7qeht/

MR-Bi slides: drive.google.com/file/d/18fnjKbtzCxHx5ooByHoZ-htFZ6u8eLRu/view
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